Serum Neurofilament light chain (NfL) levels in children with and without neurologic diseases
European Journal of Paediatric Neurology | May 24, 2023
Tobias Geis a, Svena Gutzeit a, Sotiris Fouzas b, Andreas Ambrosch c d, Pascal Benkert e, Jens Kuhle e, Sven Wellmann
European Journal of Paediatric Neurology, 2023
https://doi.org/10.1016/j.ejpn.2023.05.003
Abstract
Background/objective
Serum neurofilament light chain (sNfL) is a specific biomarker of neuronal damage. Elevated sNfL levels have been reported in numerous neurologic diseases in adults, whereas data on sNfL in the pediatric population are incomplete. The aim of this study was to investigate sNfL levels in children with various acute and chronic neurologic disorders and describe the age dependence of sNfL from infancy to adolescence.
Methods
The total study cohort of this prospective cross-sectional study consisted of 222 children aged from 0 to 17 years. Patients’ clinical data were reviewed and patients were assigned to the following groups: 101 (45.5%) controls, 34 (15.3%) febrile controls, 23 (10.4%) acute neurologic conditions (meningitis, facial nerve palsy, traumatic brain injury, or shunt dysfunction in hydrocephalus), 37 (16.7%) febrile seizures, 6 (2.7%) epileptic seizures, 18 (8.1%) chronic neurologic conditions (autism, cerebral palsy, inborn mitochondrial disorder, intracranial hypertension, spina bifida, or chromosomal abnormalities), and 3 (1.4%) severe systemic disease. sNfL levels were measured using a sensitive single-molecule array assay.
Results
There were no significant differences in sNfL levels between controls, febrile controls, febrile seizures, epileptic seizures, acute neurologic conditions, and chronic neurologic conditions. In children with severe systemic disorders, by far the highest NfL levels were found with an sNfL of 429 pg/ml in a patient with neuroblastoma, 126 pg/ml in a patient with cranial nerve palsy and pharyngeal Burkitt’s lymphoma, and 42 pg/ml in a child with renal transplant rejection. The relationship between sNfL and age could be described by a second order polynomial with an R2 of 0.153 with a decrease of sNfL by 3.2% per year from birth to age 12 years and thereafter an increase by 2.7% per year until age 18 years.
Conclusions
In this study cohort, sNfL levels were not elevated in children with febrile or epileptic seizures, or various other neurologic diseases. Strikingly high sNfL levels were detected in children with oncologic disease or transplant rejection. A biphasic sNfL age-dependency was documented, with highest levels in infancy and late adolescence and the lowest levels in middle school age.