NfL predicts relapse-free progression in a longitudinal multiple sclerosis cohort study: Serum NfL predicts relapse-free progression
EBioMedicine | September 24, 2021
Uphaus T, Steffen F, Muthuraman M, Ripfel N, Fleischer V, Groppa S, Ruck T, Meuth SG, Pul R, Kleinschnitz C, Ellwardt E, Loos J, Engel S, Zipp F and Bittner S
EBioMedicine. 2021;72:103590
https://doi.org/10.1016/j.ebiom.2021.103590
This study was performed using the Quanterix HD-1 Analyzer.
Abstract
Background
Easily accessible biomarkers enabling the identification of those patients with multiple sclerosis (MS) who will accumulate irreversible disability in the long term are essential to guide early therapeutic decisions. We here examine the utility of serum neurofilament light chain (sNfL) for forecasting relapse-free disability progression and conversion to secondary progressive MS (SPMS) in the prospective Neurofilamentandlongtermoutcome inMS (NaloMS) cohort.
Methods
The predictive ability of sNfL at Baseline and sNfL follow-up (FU)/ Baseline (BL) ratio with regard to disability progression was assessed within a development cohort (NaloMS, n=196 patients with relapsing-remitting MS (RRMS) or clinically isolated syndrome) and validated with an external independent cohort (Düsseldorf, Essen, n=204). Both relapse-free EDSS-progression (RFP: inflammatory-independent EDSS-increase 12 months prior to FU) and SPMS-transition (minimum EDSS-score of 3.0) were investigated.
Findings
During the study period, 17% (n=34) of NaloMS patients suffered from RFP and 14% (n=27) converted to SPMS at FU (validation cohort RFP n=42, SPMS-conversion n=24). sNfL at BL was increased in patients with RFP (10.8 pg/ml (interquartile range (IQR) 7.7-15.0) vs. 7.2 pg/ml (4.5-12.5), p<0.017). In a multivariable logistic regression model, increased sNfL levels at BL (Odds Ratio (OR) 1.02, 95% confidence interval (CI) 1.01-1.04, p=0.012) remained an independent risk factor for RFP and predicted individual RFP risk with an accuracy of 82% (NaloMS) and 83% (validation cohort) as revealed by support vector machine. In addition, the sNfL FU/BL ratio was increased in SPMS-converters (1.16 (0.89-1.70) vs. 0.96 (0.75-1.23), p=0.011). This was confirmed by a multivariable logistic regression model, as sNfL FU/BL ratio remained in the model (OR 1.476, 95%CI 1.078-2,019, p=0.015) and individual sNfL FU/BL ratios showed a predictive accuracy of 72% in NaloMS (63% in the validation cohort) as revealed by machine learning.
Interpretation
sNfL levels at baseline predict relapse-free disability progression in a prospective longitudinal cohort study 6 years later. While prediction was confirmed in an independent cohort, sNfL further discriminates patients with SPMS at follow-up and supports early identification of patients at risk for later SPMS conversion.