Publications & Posters

Biomarkers of neuronal damage in saturation diving- A controlled observational study.

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY | SEPTEMBER 25, 2020

Rosén A, Gennser M, Oscarsson N, Kvarnström A, Sandström G, Blennow K, Seeman-Lodding H and Zetterberg H.

Eur J Appl Physiol (2020).

DOI: https://doi.org/10.1007/s00421-020-04499-y

ABSTRACT

Purpose

A prospective and controlled observational study was performed to determine if the central nervous system injury markers glial fibrillary acidic protein (GFAp), neurofilament light (NfL) and tau concentrations changed in response to a saturation dive.

Methods

The intervention group consisted of 14 submariners compressed to 401 kPa in a dry hyperbaric chamber. They remained pressurized for 36 h and were then decompressed over 70 h. A control group of 12 individuals was used. Blood samples were obtained from both groups before, during and after hyperbaric exposure, and from the intervention group after a further 25–26 h.

Results

There were no statistically significant changes in the concentrations of GFAp, NfL and tau in the intervention group. During hyperbaric exposure, GFAp decreased in the control group (mean/median − 15.1/ − 8.9 pg·mL−1, p < 0.01) and there was a significant difference in absolute change of GFAp and NfL between the groups (17.7 pg·mL−1, p = 0.02 and 2.34 pg·mL−1, p = 0.02, respectively). Albumin decreased in the control group (mean/median − 2.74 g/L/ − 0.95 g/L, p = 0.02), but there was no statistically significant difference in albumin levels between the groups. In the intervention group, haematocrit and mean haemoglobin values were slightly increased after hyperbaric exposure (mean/median 2.3%/1.5%, p = 0.02 and 4.9 g/L, p = 0.06, respectively).

Conclusion

Hyperbaric exposure to 401 kPa for 36 h was not associated with significant increases in GFAp, NfL or tau concentrations. Albumin levels, changes in hydration or diurnal variation were unlikely to have confounded the results. Saturation exposure to 401 kPa seems to be a procedure not harmful to the central nervous system.