Beef tenderness and intramuscular fat proteomic biomarkers: Effect of gender and rearing practices.
JOURNAL OF PROTEOMICS | MARCH 17, 2019
Picard B, Gagaoua M, Al Jammas M and Bonnet M
J Proteomics. 2019 May 30;200:1-10.
DOI: 10.1016/j.jprot.2019.03.010
ABSTRACT
This study analyzed the effect of gender on the abundances of 20 protein biomarkers of tenderness and/or intramuscular fat content in five muscles: Longissimus thoracis, previously identified as biomarkers of tenderness and/or intramuscular Semimembranosus, Rectus abdominis, Triceps brachii and Semitendinosus, from cows and steers of the Protected Designation Origin Maine Anjou. The protein abundances were quantified using Reverse Phase Protein Array with specific validated antibodies. Among the 20 studied proteins, the abundance of 8 biomarkers involved in energetic metabolism, contraction and cellular stress, was different according to gender. The gendereffect was different depending on the muscle type with greater abundances in Semitendinosus, Rectus abdominis and Longissimus thoracis muscles. On the basis of animal characteristics and rearing factors, three rearing practices classes were identified for cows. Among the factors, fattening duration modified the abundance of 12 proteins mainly in Triceps brachii muscle. A positive correlation between the abundance of the small HSP20 and slaughter age was observed in the 5 muscles. Two proteins, Four and a half LIM domains 1 (FHL1) and Glycogen phosphorylase (PYGB) appeared to be muscle, gender and rearing practices independent. These results constitute valuable data to understand how to manage beef quality by controlling these different factors. SIGNIFICANCE: This study is the first to compare the relative abundance of 20 proteins previously identified as biomarkers of tenderness and/or intramuscular fat (IMF) content of beef meat between cows and steers among 5 different muscles. Its originality is in the use of Reverse Phase Protein Array for fast quantification of the proteins and the integration of data from rearing factors, carcass characteristics and biomarkers of meat qualities. The findings provide evidence for modulating biomarker levels by controlling the choice of animal type and rearing factors according to the type of muscle that would produce animals with the desired meat qualities.